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ABSTRACT

A Physical Unclonable Function (PUF) is a physical system that leverages manufacturing pro-

cess variations to generate unclonable and inherent instance-specific measurements of physical ob-

jects. PUF is equivalent to human biometrics in many ways where each human has a unique

fingerprint. PUF can securely generate unique and unclonable signatures that allow PUF to boot-

strap the implementation of various physical security issues. In this thesis, we discuss PUFs, extend

it to a novel SW-PUF, and explore some techniques to utilize it in security applications.

We first present the “SW-PUF” - basic building block of this thesis, a novel PUF design that

measures processor chip ALU silicon biometrics in a manner similar to all PUFs. Additionally, it

composes the silicon measurement with the data-dependent delay of a particular program instruc-

tion in a way that is difficult to decompose through a mathematical model. We then implement

the proposed PUF to solve various security issues for applications such as Software Protection

and Trusted Computing. We prove that the SW-PUF can provide a more robust root of trust for

measurement than the existing trusted platform module (TPM).

Second, we present the “Reversible SW-PUF”, a novel PUF design based on the SW-PUF

that is capable of computing partial inputs given its outputs. Given the random output signature

of specific instruction in a specific basic block of the program, only the computing platform that

originally computed the instruction can accurately regenerate the inputs of the instruction correctly

within a certain number of bits. We then implement the Reversible SW-PUF to provide a verifiable

computation method. Our scheme links the outsourced software with the cloud-node hardware to

provide proof of the computational integrity and the resultant correctness of the results with high

probability.

Finally, we employ the SW-PUF and the Reversible SW-PUF to provide a trust attribute for

data on the Internet of Thing (IoT) systems by combining data provenance and privacy-preserving
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methods. In our scheme, an IoT server can ensure that the received data comes from the IoT

device that owns it. In addition, the server can verify the integrity of the data by validating the

provenance metadata for data creation and modification.
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CHAPTER 1. INTRODUCTION AND BACKGROUND

In an ideal world where hackers don’t exist, computer security is not an issue. While computer

and mobile device users can simply and blindly use their devices to perform a variety of sensitive

tasks (e.g., accessing bank accounts, paying bills, or outsourcing computation), in the real world

maintaining trust and security is, unfortunately, a very challenging task, with a new software

vulnerability reported every day. Scholars continuously propose new security solutions while hackers

continuously try to find a back door for overcoming these solutions. This battle between scholars and

hackers every day keeps the door open for a better security system. With the rapid development of

the new technology, maintaining security and trust for users’ sensitive data is even more important.

A Physical Unclonable Function (PUF) is employed to solve various hardware security issues,

such as authentication, secret key generation, and software licensing. However, the traditional

PUFs are not well-suited for many emerging security issues because they are vulnerable to observe

once, run everywhere (OORE) attacks. The work in this thesis explores robust PUFs that compose

the silicon measurement with the data-dependent delay of a particular program instruction in a way

that is difficult to decompose through a mathematical model. This feature of the PUF is employed

to provide various security solutions.

In the first part of this thesis, we propose a novel SW-PUF design approach. Then we employ the

proposed PUF to provide reliable and secure platforms that offer more robust bases of measurement

trust than the existing trusted platform module (TPM). Next, we extend our PUF design to a

reversible SW-PUF, where the new reverse computing capability provides an efficient mechanism

for verifiable computations in the cloud computing domain.

In the last part of this thesis, we present a privacy-preserving data provenance solution that

merges the proposed PUF with non-interactive zero-knowledge proof to provide trustworthy and

dependable IoT systems.
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1.1 Background

This Section reviews background and prior work related to the topic of this thesis that are going

to be presented in the following chapters. A brief background of PUF types and their applications

is introduced in Section 1.1.1. Section 1.1.2 reviews the definition and some prior work on Trusted

Computing issues. A definition of the Verifiable Computations and some prior work is presented

in section 1.1.3. Finally, section 1.1.4, introduces an overview of the Data Provenance.

1.1.1 Physical Unclonable Function overview

In Integrated Circuits (IC) technology many parameters of chip production are not fully con-

trolled. Timing parameters, for example, are sensitive to process variations that can be caused by

factors such as contamination, metal and oxide thickness variations. These factors result in small

variations for each IC; meaning that each chip is unique and no two physical objects are exactly

the same even if they have been fabricated under the same conditions. However, such variations

are usually not significant enough to affect chip performance. To facilitate the extraction of such

unique physical characteristics, a physically unclonable function could be implemented. A PUF

is a mathematical function that is derived from a physical system to generate unique signatures

(responses Ri) to a corresponding (challenges Ci), where the challenge-response relation is defined

by a process variability of semiconductor devices ( Kawa et al. (2006)). Typical PUF responses

are random, unpredictable and almost impossible to reproduce. The applications of PUFs mainly

relate to physical security tasks of a low-cost, resource-constrained electronic device.

1.1.1.1 Classification of PUFs

Many types of PUFs have been presented in the literature, PUFs can be categorized based

on different properties. For example, PUFs can be classified based on operation and construction

principles into three classes: silicon PUFs, electronic PUFs, and non-electronic PUFs.
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Silicon PUFs

Silicon PUFs are implanted on a silicon IC chip, they exploit the unmanageable CMOS man-

ufacturing process variations to generate a unique stamp to characterize each IC chip. There are

two major types of silicon PUFs: Delay-based silicon PUFs and memory-based silicon PUFs. The

most popular delay-based PUFs are the Ring Oscillator PUFs which were proposed for the first

time by Gassend (2003) and the arbiter PUFs which were introduced by Lim et al. (2005).

Figure 1.1 shows the basic implementation of the Ring Oscillators (RO) circuit. The basic

structure consists of several identical ring oscillators, an n-to-2 multiplexer, two counters, and a

comparator. Each of the identical ROs oscillates has a different frequency due to manufacturing

process variations. To generate an unpredictable sequence of bits, one pair of ring oscillators is

selected then the counters will count the oscillation cycles for a certain period of time.

Figure 1.1 Ring Oscillator PUF basic structure.
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Electronic PUFs

Electronic PUFs are based on analog measurements of electric properties of an object such as

power, resistance, and capacitance. Coating PUF - which has been proposed by Skoric et al.

(2007) - is one example of electronics PUFs. It can be implemented on the top metal layer of an

IC chip and the randomness of capacitance measurements between each pair of metal wires will be

employed to generate a unique identifier for each IC chip.

Non-electronic PUFs

Non-electronic PUFs involve all functions based on non-electric technologies or materials. How-

ever, most of the time, an electronic and digital techniques will be employed to process the challenge

/response pairs. The non- electronic PUFs are the oldest types of PUFs and are usually based on

random reflection of optical fibers or lasers. A popular example of non-electronic PUF is the Optical

PUF as proposed by Pappu et al. (2002a) . Figure 1.2 illustrates the basic implementation of an

Optical PUF, which consists of a transparent material such as glass. When a coherent laser beam

shines on the material, a totally random and unique pattern could be and recorded. This pattern

is almost impossible to reproduced because it depends on the position of the scattering particles

and the characteristics of the laser beam such as wavelength, angle, and location.

Figure 1.2 Optical PUF basic structure.
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1.1.1.2 Properties of PUFs

There are a wide variety of properties for PUF that have been proposed in the literature - Roel

(2012). Not all of these properties are required to define an acceptable PUF. Each set of specific

properties can be useful in a specific application and the remaining properties can be nice-to-have

qualities. In this section we will only list the most important properties that are required for

physical security solutions, which are:

• Unique: The responses of the PUF must include some unique information about the identity

of the actual physical entity.

• Unclonable: It is the core property of a PUF. This means that it should not be possible to

clone the exact physical entity even if it was manufactured in the same production process as

the original.

• Reproducible: The response of the PUF must be reproducible up to a small error.

• Unpredictable: The response of the PUF must be hard to predict giving only the challenge.

1.1.1.3 Evaluations of PUFs

There are three Common metrics to evaluate the PUFs responses:

• Uniqueness: Uniqueness measures the capability to distinguish between different devices.

Hamming Distances (HD) between PUF responses are used to measure uniqueness. An ideal

HD between any two PUF responses is 50%.

• Randomness: Randomness evaluates two properties in a PUF signature by analyzing the

distribution of 0’s and 1’s, the independence and the uniformity.

• Reliability: Reliability measures robustness of a PUF in the presence of environmental varia-

tions. Temperature variations are the main factor that affect the stability of a PUF response.
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1.1.1.4 Applications of PUFs

PUFs can be deployed in many applications based on their properties. Providing a physical

security solution is one of the most popular applications. This could be achieved by deploying

an appropriate PUF in a scheme together with other software or hardware to improve its char-

acteristics. Very broad application based on PUFs have been proposed in the past staring with

applications that require some sort of randomness such as random number generators, and crypto-

graphic key generation Aldaghri and Mahdavifar (2018). PUFs also seem to be an elegant solution

for application that require device authentication where some device property can be obtained from

process variation as proposed by Suh and Devadas (2007a). The authors in Guo et al. (2018)

have also employed PUFs in Cryptographic applications.

1.1.2 Trusted Computing

Trusted computing refers to hardware components and software technologies that together pro-

vide confidence that a computing platform will operate as expected. In other words, trusted com-

puting can solve computer security problems using additional hardware. A group of international

industry hardware manufacturers and software vendors had formed a not-for-profit organization

called the Trusted Computing Group (TCG) for developing some policies and specifications to

combining trusted hardware with various computing platforms. These specifications help protect

data, hardware, and other resources from stealing, damage, or compromise without adversely im-

pacting the rights of participating individuals or businesses. A Trusted Platform Module (TPM)

is a major building block in achieving the goals of a TCG. The TPM uses hardware and associated

software to provide a trusted computing base.

1.1.2.1 Trusted Platform Module

Trusted Platform Module (TPM) is a hardware chip that is embedded within a trusted comput-

ing platform to provide a hardware root of trust. An asymmetric public, private key pair embedded

into TPM serves to prove its unique identity. The TPM can securely store cryptographic keys which
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can be used to authenticate the platform and protect its information. The TPM’s design relies on

the host platform for software measurements. It receives the measurements of the platform com-

ponents performed by measuring software started on the CPU at boot stage. It stores these values

in Platform Configuration Registers (PCRs) then extends these values at each stage. Thus, the

TPM serves as a root of trust for reporting the measurement rather than performing the actual

measurement. The TPM is able to hash and report the actual measurements from an untrusted

environment. It is impossible for the TPM to verify these measurements. Figure 1.3 shows the

major components of a TPM.

Figure 1.3 TPM major components.

Platform Configuration Register (PCR)

Platform Configuration Registers (PCRs) are one of the essential features of a TPM; they are

used to store hash digests that represent platform integrity measurements. PCRs are shielded inside

the TPM where data is protected against interference and exposure. PCRs are designed to allow

a secure representation of the host system’s configuration metric, which can be used to monitor
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any changes in the software and hardware configurations. The hash value of any PCR is updated

by concatenating a new digest value with the original digest value, followed by a hash operation

whose result is stored back to the PCR.

1.1.3 Verifiable Computations

Cloud computing has had significant growth in recent years, which attracted interest in the

domain of Verifiable Computation (VC). Cloud computing is a popular choice for many individuals

and small businesses for all the benefits such as enhanced productivity, increased efficiency, and

saving money. Computation and resource starved mobile devices also tend to perform their heavy-

duty computation on the cloud. However, the security and the correctness of cloud computing are

a critical concern due to the sensitivity and importance of the data outsourced to the Cloud. The

concept of verifiable computation allows a lower-resource client to safely outsource the computation

of a program to an untrusted cloud. This cloud performs the computation and provides a proof

asserting their correctness, the client can verify that the produced results are consistent with the

program specification and that the computations were performed correctly. To be viable, the effort

of performing the verification must be negligible compared to the actual computation.

Figure 1.4 Verifiable computation scenario.

Three main solutions were proposed in the literature to support verifiable computation: Veri-

fiable Computation based on Trusted Computing as proposed by Sailer et al. (2004), and Chen
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et al. (2006). This approach depends on some trusted hardware such as TPM. The main drawback

of this solution was the assumption that the physical protections cannot be defeated. The second

solution is Verifiable Computation with a Non-Interactive Argument. It is described by Parno

et al. (2013), and Parno et al. (2016). This approach relies on complex Probabilistically Checkable

Proofs (PCPs) or Fully-Homomorphic Encryption (FHE). However, this theoretical solution is not

practical because it requires thousands of years to be executed, even for a simple computation.

The last solution is Verifiable Computation with Interactive Proofs which was proposed by Vu

et al. (2013), and Thaler et al. (2012). This protocol involves an exchange of massive number of

messages between the cloud and the client. During this conversation, the cloud aims to convince

the client that the computation is performed correctly. While this approach is often efficient, it

applies only to a narrow class of computations.

1.1.4 Data Provenance

Data provenance refers to the process of maintaining data integrity and authenticity by recording

the data origin, entities, processes, and systems that impact data of interest. Data provenance

describes the data life cycle and tracks the data as it goes through diverse processes. In this thesis,

we are interested particularly in the data provenance protocols for IoT systems, where such systems

have many resource-constraints.

Recently, several data provenance protocols have been investigated in literature. For instance,

the protocol proposed by Sanchez et al. (2018) extended the IBM Idemix protocol with a non-

interactive zero-knowledge proof to sign the metadata transmitted by an IoT device in a privacy-

preserving way. However, this solution is limited only for some types of systems. Another work

proposed by Alharbi and Lin (2012) investigated the privacy-preserving data provenance. However,

their design relies on the trust of the server itself on an ecosystem. Few other techniques established

a secure data provenance based on PUFs. The protocol proposed by Javaid et al. (2018) used

PUF with blockchain network in order to add a unique hardware fingerprint of each IoT device.

Their proposed solution depends on storing many Challenge Response Pairs (CRPs) in the server
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memory exposing them to storage attack concerns. Aman et al. (2017) have used the Received

Signal Strength Indicator (RSSI) along with PUF and symmetric encryption to provide the privacy

of the transmitted metadata between the IoT device and the server. Similar to the work proposed

by Javaid et al. (2018), this scheme also relies on storing many challenge-response pairs (CRPs)

in the server; in addition it also relies on the RSSI values which is not practical in some IoT

environments.

1.2 Thesis Contributions

In this thesis, we make the following contributions:

• Propose a novel PUF design, “SW-PUF”, that measures processor chip ALU silicon biometrics

and composes them with the data-dependent delay of a particular program.

• Propose a protocol for third-party verification using the SW-PUF for measuring software

activity at run-time to ensure the control-flow integrity of a program.

• Present a static root of trust scheme based on the proposed PUF that can offer more advanced

protection than the TPM.

• A VLSI area and energy analyses are performed for a subset of TPM commands to compare

the SW-PUF with TPM.

• Extend the SW-PUF design to make it reversible. The new PUF is able to compute partial

inputs after being given its outputs.

• Develop a protocol based on the reversible SW-PUF based on the Bayesian method for Veri-

fiable Computations in cloud computing within the class of interactive proof systems.

• evaluate our verifiable computation scheme to demonstrate that it yields faster verification

than previous approaches.

• Present a privacy-preserving data provenance solution that merges the SW-PUF with non-

interactive zero-knowledge proof to provide trustworthy and dependable IoT systems.
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• Implement the proposed data provenance protocol on FPGA Altera Cyclone, for evaluating

the scheme that was developed in this work.

1.3 Thesis Outline

This section outlines the structure of the thesis and provides a brief review of each chapter.

The thesis is organized as follows:

Chapter 1: The first chapter briefly introduces the motivation of this research, and separately

outlines the contributions of each chapter.

Chapter 2: In this chapter, we introduce the design, implementation and evaluation of a

new type of PUFs. The proposed PUF is given the name of ”SW-PUF”. Then we developed

and evaluated protocols based on this PUF to provide trusted computing and software integrity

measurement solutions.

Chapter 3: In this chapter, we introduce the design, implementation and evaluation of a new

type of PUFs, which we called ”reversible SW-PUF”. Then we proposed and evaluated a protocol

based on this PUF to provide a Verifiable Computations base for cloud computing within the class

of interactive proof systems.

Chapter 4: In this chapter, we developed and evaluated a privacy-preserving data provenance

scheme that is based on the SW-PUF and the reversible SW-PUF to provide trustworthy and

dependable IoT systems.

Chapter 5: In this chapter, we summarize the most important findings of this thesis and

propose a number of future research directions.
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CHAPTER 2. PHYSICAL UNCLONABLE FUNCTIONS (PUFS)

ENTANGLED TRUSTED COMPUTING BASE

Modified from a paper accepted by IEEE-iSES 2019 conference

Hala Hamadeh and Akhilesh Tyagi

Best paper award winner

2.1 Abstract

The center-piece of this chapter is a software measurement physical unclonable function (PUF).

It measures processor chip ALU silicon biometrics in a manner similar to all PUFs. Additionally,

it composes the silicon measurement with the data-dependent delay of a particular program in-

struction in a way that is difficult to decompose through a mathematical model. This approach

ensures that each software instruction is measured if computed. This constitutes a more robust

root of trust for measurement than the existing trusted platform module (TPM). The SW-PUF

measurements bind the execution of software to a specific processor with a corresponding certificate.

This makes the SW-PUF a promising candidate for applications requiring Software Protection and

Trusted Computing. For instance, it could measure the integrity of an execution path by generat-

ing a signature that is unique to the specific program execution path and the processor chip. To

explore the feasibility of the proposed schemes, the SW-PUF have been implemented in HSPICEk-

2015.06 using 45 nm technology. It is analyzed in term of three metrics: uniqueness, reliability,

and randomness. Our proof-of-concept implementation shows good uniqueness compared to other

types of PUFs, the average Hamming distance between a pair of responses over different software

PUFs (different instruction input data) was 32% (50%). The SW-PUF exhibits more than 96%

reliability for temperatures from −10°C to 65°C. The randomness was measured with NIST suite

of 14 tests - wherein 12-13 tests were consistently passed with a minimum pass rate of 90.6%. A
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Verilog synthesis based comparison of SW-PUF versus TPM area and energy shows that area needs

of SW-PUF are less than 0.01% of TPM area needs and energy of SW-PUF is less than 0.0001%

of TPM energy.

2.2 Introduction

The VLSI fabrication technology at small scale is statistical by nature. Many parameters of

chip production are not fully controlled. Timing parameters, for example, are sensitive to process

variations that can be caused by factors such as contamination, metal and oxide thickness variations,

and lithography variations. These factors result in small variations in threshold voltage and gate

oxide thickness for each logical gate; meaning that each chip is unique and no two transistors are

identical in delay even if they have been fabricated under the same conditions. Such variations are

usually not significant enough to affect circuit performance by stretching the clock period to hide

these variations. The differences in process parameters can be exposed at sub-clock period level

to generate a unique chip biometric identity to provide authentication for each chip. A Physical

Unclonable Function (PUF) is a physical system to leverage such process variations to generate

a response to a challenge Kawa et al. (2006). Traditional Challenge-Response Pair (CRP) PUFs

are not well-suited for the software protection problem in offline settings as stated by Nithyanand

and Solis (2012a) because they are vulnerable to observe once, run everywhere (OORE) attacks.

Nithyanand and Solis (2012a) argue that the PUF measurements should be interleaved at a finer

granularity than the whole program to achieve robust software protection.

Within a processor, the datapath elements (which are all silicon-based) are the function units

that interact to perform the computation of a software instruction. Program inputs determine the

execution path which determines what input data is received by each function unit. The delays

of a function unit that can be attributed to the instruction input data values become in a loose

manner the execution path identity. Combining these delays with silicon variation based delays

in a non-decomposable manner will allow us to realize a PUF for composite identity of software

and processor. We accomplish this goal of entangling the program instruction level inputs with
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function unit level silicon variability in a novel SW-PUF design that composes the data-dependent

delay variation in a function unit with the silicon process level delay variation to measure both the

software and the device. The measurement reflects both the program instruction input values and

process level variation within the processor chip function unit. The function unit delay variation

results from both the process variation (hardware dependent) and the function unit data inputs

(software dependent). In a five-stage pipeline MIPS implementation, a typical software instruction-

mix consists of the ALU, load/store, and control class of instructions. The ALU instructions use

the ALU for the desired computation. The address computation of a load/store instruction uses

an ALU unit, the control instructions also use the ALU unit for branch target address calculation.

A datapath ALU design that automatically measures each instruction enables a root of trust for

measurement to ensure that each instruction in the software is measured through the ALU. In our

approach, the existing ALU unit is repurposed slightly to function as a virtual PUF as a side-effect.

The design of the SW-PUF has been evaluated in HSPICE using predictive technology model

and tested on 8 FPGAs. The evaluation of this ALU PUF reveals excellent randomness, acceptable

uniqueness, and satisfactory reliability. As in any traditional PUF, use of error correction is needed

to ensure the reproducibility in its response. Herder et al. (2017) presented a good error correction

scheme. However, in this work, the focus is on the design and implementation of the SW-PUF

to assess its feasibility for software verification. The robustness properties such as reproducibility

through error correction would be the target of future research.

The rest of the paper is organized as follows. In Section 2.3, we summarize the existing work

on PUFs and describe relevant concepts. In section 2.4, we describe the design of the classic RCA.

Section 2.5 presents the design of the proposed SW-PUF. In Section 2.6, we describe software

integrity measurement framework. We then compare the SW-PUF with a TPM in Section 2.7. The

experimental and simulation results are given for the SW-PUF in Section 2.8. Finally, Section 2.9

concludes the paper.
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2.3 Related Work

Physical Unclonable Functions (PUFs) or Physical One-Way Functions (P-OWFs) were first

proposed in 2002 by Pappu et al. (2002b). PUFs are mostly implemented based on timing and

delay variation of silicon circuits. Our proposed design is also based on such timing parameters

variability; however, other kinds of PUFs have also been proposed. For example, Guajardo et al.

(2007a) proposed a Memory-Based PUF that uses SRAM memory randomness, while Pappu et al.

(2002b) proposed a non-electronic optical PUF that depends on the speckle patterns of an optical

medium under laser illumination. PUFs are suitable for use in many applications such as hardware

authentication as presented by Suh and Devadas (2007b), Intellectual Property (IP) protection such

as the work presented by Guajardo et al. (2007b), software protection presented by Nithyanand

and Solis (2012b), cryptographic key generation presented by Guajardo et al. (2007b), and PUF-

based RFID for anti-counterfeiting presented by Devadas et al. (2008). PUFs also have been used

on a mobile device to support authentication presented by Scheel and Tyagi (2015).

There are several research efforts to build a PUF out of an ALU. Kong et al. proposed ALU

PUF which is based on the delay difference in two identical ALUs along the lines of an arbiter

PUF Kong et al. (2014). They proposed to combine the output of the ALU PUF with the

checksum computation in a remote attestation mechanism to bind the computation to hardware

ALU. However, their ALU PUF does not seem to have any program data-dependent properties

tying it to the execution of a program - unlike this research. They used two modes for the ALU,

one is the normal mode and the other is to perform the PUF operation.

PUFs are also used with TPM to enhance security. Choi and Kim (2012) proposed to protect

the keys inside the TPM through the use of key-hiding with a PUF. In a similar work presented

by Li et al. (2016), Chatterjee et al. (2018), the authors present approaches for enhancing the

security of key hierarchy in a TPM using PUF. Lebedev et al. (2018) and Müller et al. (2018)

proposed to use PUF in order to build a secure boot. However, all the existing TPM solutions suffer

from a major problem since it is impossible for the TPM to verify the received measurements. Our
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approach differs from the TPM principally in that all the measurements occur within trusted

boundaries inside the CPU.

2.4 Background

2.4.1 Ripple Carry Adder (RCA)

A ripple carry adder is constructed by chaining stages of full adders, with the carry output

from each full adder rippling as a carry input to the next full adder. For simplicity, a 4-bit RCA is

shown in Figure 2.1. The final sum of the most significant bit becomes valid after the carry signal

has rippled all the way through the adder, from the least significant stage to the most significant

stage, in the worst case. The worst-case delay through an n-bit RCA occurs when a carry signal

ripples from the least significant bit to the most significant bit through all stages; its approximate

value is given by the following Equation:

O(n) = (

n−1∑
i=0

tc) + ts (2.1)

where tc is the delay through the carry stage of a single full adder and ts is the delay in

computing the final correct sum. However, the average carry chain length is O(log n) when random

input data is presented by Parhami (2009). Garside (1993) determined that the average carry

propagation length was 4 for a 32-bit adder. Each full adder contains 5 gates: 1 OR, 2 ANDs, and

2 XORs, and every gate has a different propagation delay, so the total delay at each stage will be

unique due to process level variations. The total delay of the adder depends on the carry chain

length and the delay of each stage. Since these factors can be identical only if the inputs to the

adder and the physical adder itself remain unchanged, we can state that this delay is unique for

each set of input data and processor.
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Figure 2.1 4-bits RCA circuit

2.5 The Principle of SW-PUF Design

The design of the SW-PUF aims to capture the delay variations caused by the fabrication

process and input data. The proposed ALU schema is shown in Figure 2.2. In this design, the ALU

output is sampled twice - once at the normal worst case clock period which is chosen to be long

enough to hide transistor level delay variability and the data-dependent delay variability; while the

shifted-clock is chosen to sample the ALU output early. The time period of the early-sampling

shifted-clock should be less than the average of the total delay of the ALU, which is log n as stated

by Burks et al. (1987) and Parhami (2009). This ensures that the instruction level data influences

the SW-PUF output. Inverters are used to generate a slight time shift between the clock and the

shifted-clock. The early sampled output is the SW-PUF output. The normal clock sampled output

is the data output generated by the instruction for the normal program consumption. Note that

the overhead of the proposed schema is minimal, one extra latch per output bit, in addition to the

shifted clock generation overhead.

As shown in Figure 2.2, the proposed design is very simple to implement using an existing ALU,

a D Flip-flop to latch the input data at time τ1, and a D Flip-flop to latch the output data at τ2,

where:

τ2 = τ1 + tdelay (2.2)
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Figure 2.2 The proposed architecture of the SW-PUF

The clock edge at τ2 leads the clock edge at the normal delay (τ1 + T for clock period T ) for

early output sampling. The output data will be likely random and ”noisy” at this time. In this

case, the output data of the ALU is a function of three parameters: the ALU inputs, the previous

state of the circuit, and the transistor-level variability.

2.6 Software integrity measurement

Measurement is a process of characterizing software. The reasons for measuring a software

are varied leading to a variety of measurement techniques. SW-PUF’s strength is the guarantee

that every instruction is measured in hardware. An instruction computation and its measurement

are atomic. Such software instruction measurement sequences at run-time can generate a unique

signature of a specific program execution path within its Control Flow Graph (CFG) on a specific

processor chip.

An execution path resulting in the dynamic instruction sequence: I0, I1, I2, . . . , In gener-

ates a corresponding sequence of PUF stamps in the modified processor, P0, P1, P2, . . . , Pn.

Note that the same execution path could result in different PUF stamp sequences since the same
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instruction Il (such as an add r1, r2, r3) could have different input data in r2, r3 - especially

when this data does not determine the control path for the execution. There are many ways this

PUF stamp sequence can be used for software protection and certification. For instance, control

flow integrity can be certified by creating a hash-based digest of the PUF stamp sequence similar

to TPM’s PCR extension as D0 = h(P0); Di = h(Di−1 || Pi), where h is a hash function, || denotes

concatenation, and Di is the program signature digest until the instruction Ii. Dn is the unique

certificate of the control flow and data flow that took place for the execution I0, I1, I2, . . . , In.

A third party can verify that the control flow indeed was correct by comparing such control path

PUF stamp digest. Although, due to the measurements being inextricably bound to the platform,

a verifying party would also need to obtain measurements from this original computing platform.

Figure 2.3 An Example of Software integrity measurement

2.7 Performance comparison of SW-PUF and TPM

Trusted Platform Module (TPM) is embedded within a trusted computing platform to provide a

hardware root of trust. The TPM’s design relies on the host platform for software measurements. It

receives the measurements of the platform components performed by measuring software started on

the CPU at boot stage. It stores these values in Platform Configuration Registers (PCRs) extending
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these values at each stage in a manner similar to our hash chaining. Thus, the TPM serves as a

root of trust for reporting the measurement rather than performing the actual measurement. The

TPM is able to hash and report the actual measurements from an untrusted environment. It is

impossible for the TPM to verify these measurements. The Software PUF can solve this weakness in

the TPM since all the measurements occur within the trust boundaries inside the CPU. Therefore,

the SW-PUF by itself can provide a more robust TPM like static root of trust for endorsement.

However, the SW-PUFs signature (hash values of the program instructions measured) is still a

very aggregated measurement for the entire program. Verifying this kind of signature has two

shortcomings: first the verifier needs to recompute everything which requires duplication of the

entire effort, and second, the verifier needs to use the same SW-PUF at the same node since the

SW-PUF is not reproducible at another node.

In order to establish a secure boot using SW-PUF, the computer system must first boot into

a trusted state. A bootloader is typically the first program started after power-up or reset. By

running the bootloader in a CPU with SW-PUF, a unique stamp or signature can be generated.

Similar to the TPM secure boot, this stamp associated with the same hashing algorithm as in PCR

of SW-PUF measurements could provide a strong root of trust.

One of the main security services offered by a TPM is remote attestation. This allows the

system to verify its hardware and software configuration integrity to a remote party. Using SW-

PUF, a stronger remote attestation protocol could be obtained. Figure 2.4 illustrates the basic

steps on how such a system could work; additional modifications could be added such as using a

nonce to ensure that old communications cannot be reused. This protocol is introduced only as a

proof of concept.

First, at the manufacturing stage, each CPU is calibrated with a unique program (authentication

program) to generate a SW-PUF signature. This specific authentication program and its signature

need to be stored at a trusted third party called a Privacy CA. When a device receives a request

for attestation, the attestor generates an Attestation Identity Key (AIK) and sends the public part

of the key to the CA. The CA will then send back the authentication program to the attestor.
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Figure 2.4 Remote attestation protocol using SW-PUF

After running the program, the attestor sends the SW-PUF signature to the third party. The

CA will then generate a signed certificate and send it back to the attestor after validating the

SW-PUF signature or PUF stamp. The attestor can now send the received AIK certificate to the

challenger. Root of Trust for Storage (RTS) is another basic security service provided by a TPM.

A key component of secure storage is the TPM-Sealing function. TPM-Sealing is a process to bind

the encryption with device state; by which an encrypted (Sealed) data can be decrypted (Unsealed)

only in the same TPM and at the same PCR state. As shown in figures 2.5 and 2.6 SW-PUF in

forward and reverse modes could be used to seal/Unseal the data with the device state. The sealing

process takes data and cryptographic key to generate SW-PUF signature and the encrypted value.

They could then be added together to produce a sealed data package. To decrypt this package, the

same CPU needs to run in reverse mode to reproduce the encrypted data. A typical decryption

process can then be performed to generate the data.

As mentioned above, the SW-PUF can offered more advanced protection than the TPM.The

following are some threat models where the SW-PUF performs better than a TPM.



www.manaraa.com

24

Figure 2.5 Sealing Data using Software-PUF

Figure 2.6 UnSealing Data using SW-PUF

Masquerade attack In remote attestation process, an attacker can send TPM measurements

of another valid system to the third party. With a SW-PUF, instead, the signature of the CPU

can be generated, available only using this particular CPU.

Malicious measurement agent A malicious agent may report incorrect integrity measure-

ments to the TPM. However, all the measurements occur within the trust boundaries inside the

CPU using the SW-PUF.

Hardware attacks An attacker may reset PCRs, and store new values in them. This attack

can’t be performed using the SW-PUF since there are no stored measurements.

2.8 Experimental and Simulation Results

2.8.1 Simulation Results

Simulations of 32-bit SW-PUF were performed in HSPICE k-2015.06 using predictive technology

model HiSIM241 [13] for all NMOS/PMOS transistors with a VDD of 3 V. The HiSIM241 model
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supports Design for Manufacturability (DFM). The value of a NSUBCDFM parameter is used to

specify the substrate impurity concentration that will affect both the mobility and the threshold

voltage. To simulate fabrication process variation, different values of NSUBCDFM (between 1.0e16

to 1.0e19) were assigned to each transistor in our design for each simulation. Matlab was used

to generate random values for the NSUBCDFM parameter for each transistor which creates 16

different patterns of PUF instances. To evaluate our proposed PUF we studied three metrics:

uniqueness, randomness, and reliability.

2.8.1.1 Uniqueness

Uniqueness measures the capability to distinguish between different devices. Hamming Dis-

tances (HD) between PUF responses are used to measure uniqueness. An ideal HD between any

two PUF responses is 50% (16-bit). To evaluate the uniqueness of the proposed PUF, we ran sim-

ulations for each SW-PUF instance by applying identical challenge to produce a unique response

for each. We then measured the HD between each pair of different responses (inter-chip). A total

of 120 statistical data elements were found this way.

To determine the number of inverters or the early sampling delay needed to generate the best

response for the SW-PUF in terms of randomness and uniqueness, we studied the response of our

circuit for various inverter chain lengths used to generate the CLK signal time shift. Using Hspice

for simulation allowed us to detect the output of the adder at any time without the need for an

inverter chain. We evaluated the output data from the adder at 20%, 30%, 35%, and 40% of the

average delay. Selection of these sampling intervals was to ensure that the HD between the early

sampled adder outputs and the final result is greater than 8.

Figure 2.7 shows the Inter-chip HD distribution between pairs of 16 SW-PUF responses. The

ALU outputs were sampled at 20%, 30%, 35%, and 40% of the average delay respectively. With

20% sampling period, the maximum Hamming distance was 11 (34% of PUF response bits); the

minimum was 3 (1% of PUF response bits); and the average was 7.1 (21% of PUF response bits).
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Figure 2.7 Inter-chip HD results for different sampling delay = (A) 20% , (B) 30%, (C)

35%, and (D) 40% respectively

While with 40% sampling period, the maximum HD was 17 (53% of PUF response bits); the

minimum was 4 (13% of PUF response bits); and the average was 10.2 (32% of PUF response bits).

To evaluate the uniqueness of the SW-PUF on the same ALU under different data inputs (Intra-

chip ), we measured the average HD distribution between a pair of output data on the same device

PUF instance with different set of input data. In this case, as shown in Figure 2.8, the maximum

HD between any pair of PUF responses was 25 (78% of PUF response bits); the minimum was 10

(31% of PUF response bits); and the average was 15.8 (50% of PUF response bits).

2.8.1.2 Randomness

Randomness evaluates two properties in a PUF signature by analyzing the distribution of 0’s

and 1’s, the independence and the uniformity. In this paper we have used the standard statistical

test suite of the National Institute of Standard and Technology (NIST) presented by Bassham
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Figure 2.8 Intra-chip HD results under inputs variations and fixed sampling delay

et al. (2010) to evaluate the responses of the SW-PUF and the reversible SW-PUF. NIST test

suite is commonly used for empirical statistical testing of uniform random number generators. The

minimum pass rate for each statistical test is approximately 90.6%. We have applied the NIST tests

to 512-bit stream that was produced from the 16 PUF instances. Table 2.1 shows the statistical

tests results that were observed at 20% (second column) and 40% (third column) sampling periods

for the SW-PUF. It was found that only one category (rank), out of fifteen statistical tests applied,

failed - in the case where the outputs of the SW-PUF were sampled at 20% of the average delay.

However, two categories (rank and non-overlapping template) failed with the 40% sampling period.

This shows that a tradeoff between randomness and uniqueness can be achieved. Larger delay

provides more uniqueness but less randomness.

2.8.1.3 Reliability

Reliability measures robustness of a PUF in the presence of environmental variations. Tem-

perature variations are the main factor that affect the stability of a PUF response. Therefore,
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Table 2.1 Summary results of statistical tests on a SW-PUF response observed at sampling

period of 20% and 40% of the average delay

#Statistical Test Avg. Success Avg. Success

Ratio at 20% Ratio at 40%

Frequency 96.875% 96.875%

Block Frequency 93.75% 93.75%

Cumulative Sums 96.875% 96.875%

Run 96.875% 96.875%

Longest Run 96.875% 100%

Rank 0% 0%

Discrete Fourier Transform 100% 96.875%

NonOverlappingTemplate 95.98% 89.531%

OverlappingTemplate 100% 100%

Universal 100% 100%

RandomExcursionsVariant 100% 100%

Approximate Entropy 100% 100%

Serial 93.75% 95.31%

LinearComplexity 100% 96.875%

the minimum pass rate for each statistical test is approximately 90.6%

reliability can be determined by varying the operating temperature and comparing the responses

with a reference response obtained under nominal temperature conditions for the same input. We

used the following equation for calculating the reliability of SW-PUF responses:

Reliability =

(
1− 1

K

n−1∑
i=0

HD(Ri, Ri,j)

n

)
× 100% (2.3)

where Ri is the reference response at room temperature 25°C, Ri,j is a response observed under

varying temperature value for the same challenge, n is the number of bits of SW-PUF, and K is

the number of samples. Figure 2.9 shows the average reliability of the sixteen PUF instances with

operating temperature from -25°C to 75°C for four cases: sampling periods at 20%, 30%, 35%, and

40% of the average delay. The worst reliability is 91% and occurs at -25°C. However, the SW-PUF

has acceptable stability with more than 96% reliability for temperatures from -10°C to 65°C.
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Figure 2.9 The reliability of SW-PUF against temperature variations

2.8.2 Experimental Results with FPGA Implementations

In order to broaden the applicability of our results, we synthesized our SW-PUFs on an FPGA

platform as well. The Field Programmable Gate Array (FPGA). PUFs results can be compared

with the results obtained from the Hspice simulation. We implemented a 64-bit SW-PUF on an

Altera DE2 Development and Education Board. Since we needed to evaluate fabrication variation

between pairs of different FPGAs, we implemented our design on eight identical FPGAs.

Figure 2.11 shows the HD distributions between a pair of 8 SW-PUFs responses from different

FPGA devices with identical inputs and 2 inverter delay sampling period. With 2 inverter delay

sampling period, the maximum HD was 25; the minimum was 3; and the average was 13.2. This is

worse than the uniqueness profile of HSPICE based simulations. However, better uniqueness can

be achieved by improving the routing for the SW-PUF.

As we did in Hspice experiments, to evaluate the uniqueness of the SW-PUF based on the adder

input data, we measured the average HD distribution between pairs of the output responses on the

same FPGA with different set of input data(Intra-FPGA) . As shown in Figure 2.10, the maximum

HD between any pair of the PUF response was 38 (59% of PUF response bits); the minimum was
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Figure 2.10 Intra-FPGA HD results under inputs variations

25 (39% of PUF response bits); and the average was 32.3 (50% of PUF response bits). This is

similar to the SPICE based PUF responses.

2.8.3 Area and energy comparison of SW-PUF and TPM

The SW-PUF design has been developed using Verilog-HDL and synthesized in Cadence RTL

compiler using 45nm CMOS technology. In earlier work presented by Hamadeh et al. (2017), a

similar design flow is pursued to compare a TPM and distributed TPM. In that work, a Residue

Number System (RNS) based homomorphic share scheme for TPM is used among several IoT

devices within a cluster. The TPM functionality is distributed to 4 or 10 slices in order to reduce the

cost of the communication between the devices in the same cluster. While A full TPM functionality

is required at the inter-cluster level, where each operation is divided between the cluster member.

A VLSI area and energy for a subset of TPM commands were computed for TPM with 1024-bit

RSA key size (full functionality), 256-bit RSA key size (4 slices), and 160-bit RSA key size (10
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Figure 2.11 Inter-FPGA HD results

slices). As shown in Table 2.2. The VLSI area and energy consumption of the proposed SW-PUF

and Reversible SW-PUF are negligible compared to the smallest slice of the TPM which provides

a more efficient design.

Table 2.2 Area and energy results of SW-PUF, Reversible SW-PUF and TPM. Note that

TPM is evaluated for multiple key sizes to reflect various classes of IoTs.

SW-PUF Reversible SW-PUF TPM(1024-RSA) TPM(256-RSA) TPM(160-RSA)

Total Area 0.029mm2 0.789mm2 618.76mm2 600.52mm2 598.25mm2

Total Energy 0.00071 nJ 0.00715 nJ 4661.86 µJ 220.12µJ 25.56µJ

2.8.4 Program Level Hash Digest of SW PUF Responses

The individual program instruction level SW-PUF responses are hash-extended to generate a

program level signature. We wanted to evaluate such signatures over a collection of programs and

execution paths through the same program to assess if the program level signatures are able to

differentiate different programs or execution paths. This experiment is a preliminary assessment of
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this capability. A cycle accurate CPU simulator like SimpleScalar Austin et al. (2002) can compute

individual instruction inputs, but not the SW-PUF behavior. Pin tool Reddi et al. (2004) (dynamic

binary instrumentation tool) was used to collect instructions and instruction input data values from

SPEC 2006 CPU benchmarks executed on Intel x86 32-bit microprocessors. Since, the SW-PUF

responses were computed with HSPICE, only a small number of such responses could be evaluated

practically. Hence, a random 100 instructions for each benchmark were sampled from its execution

trace. Their PUF stamp sequences were then simulated with HSPICE k-2015.06. The program

level signatures were generated by XOR’ing the 100 randomly sampled instruction level signatures.

Figure 2.12 shows the average HD between the program level PUF stamps over 16 chips across the

SPEC 2006 benchmarks. As shown in Figure 2.12, the minimum HD between a pair of instruction

level signatures was 20.9%. Any hash function based signature extension will result in 50% HD

between a pair of program stamp digests.

Figure 2.12 HD of Program Level Hash-Extended Signatures for different devices.
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2.9 Conclusions

In this paper, we present a novel PUF design that is suitable for Software Protection & Trusted

Computing Base. We show that the proposed SW-PUF is better suited for software protection

than a TPM. We also demonstrate that it can provide a more robust static root of trust. The SW-

PUF design has been implemented on an FPGA platform (Altera DE2 Development and Education

Board). In addition, a simulation analysis in HSPICEk-2015.06 using predictive technology model

HiSIM241 was performed. The responses measured from the SW-PUF have a uniqueness of about

30%, excellent randomness, and a reliability of 96% at temperatures from -10°C to 65°C. Wang

et al. (2018) generate a stable response of a PUF by utilizing random hard defect generated from

Directed Self Assembly (DSA) process. A similar mechanism could be used to generate an ideal

response for the proposed SW-PUF.
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CHAPTER 3. PROBABILISTIC VERIFICATION OF OUTSOURCED

COMPUTATION BASED ON NOVEL REVERSIBLE PUFS

Modified from a paper accepted by ESOCC-2020 conference

Hala Hamadeh, Abdallah Almomani, and Akhilesh Tyagi

3.1 Abstract

With the growing number of commercial cloud-computing services, there is a corresponding

need to verify that such computations were performed correctly. In other words, after a weak

client outsources computations to an untrusted cloud, it must be able to ensure the correctness of

the results with less work than re-performing the computations. This is referred to as verifiable

computation. In this paper we present a new probabilistic verifiable computation method based

on a novel Reversible Physically Unclonable Function (PUF) and a binomial Bayesian Inference

model. Our scheme links the outsourced software with the cloud-node hardware to provide a proof

of the computational integrity and the resultant correctness of the results with high probability.

The proposed Reversible SW-PUF is a two-way function capable of computing partial inputs given

its outputs. Given the random output signature of a specific instruction in a specific basic block of

the program, only the computing platform that originally computed the instruction can accurately

regenerate the inputs of the instruction correct within a certain number of bits. To explore the

feasibility of the proposed design, the Reversible SW-PUF was implemented in HSPICE using

45 nm technology. The probabilistic verifiable computation scheme was implemented in C++,

and the Bayesian Inference model was utilized to estimate the probability of correctness of the

results returned from the cloud service.Our proof-of-concept implementation of Reversible SW-

PUF exhibits good uniqueness compared to other types of PUFs, and exhibits 100% reliability for

temperatures between−10°C to 65°C. The randomness was measured with the NIST suite of 14
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tests wherein 12 tests were consistently passed. Finally, we demonstrate our verifiable computation

approach on a matrix computation. We show that it enables faster verification than existing

verification techniques.

3.2 Introduction

Verifiable Computations (VC) have attracted enormous interest and attention with the recent

growth in cloud computing. The concept of verifiable computation allows a lower-resource client

to outsource the computation of a program to an untrusted cloud. With a proof provided by the

cloud, the client can verify that the results produced are consistent with the program specification

and that the computations were performed correctly. To be viable, the effort of performing the

verification must be negligible compared to the actual computation. In recent years, interest in

physically-unclonable functions (PUFs) has evolved. PUFs have been deployed in different appli-

cations because of their ability to generate “digital fingerprints” of unique identities for a physical

system. SW-PUF Hamadeh and Tyagi (2019) is a specific type of PUF that binds software ex-

ecution to the exact hardware platform and produces unique signatures at various points in the

software’s execution. The SW-PUF signature is a promising candidate for providing a proof that

a specific computation was performed on a specific platform. By expanding the capabilities of a

SW-PUF to include invertibility and commutativity, we achieve elements of verifiable computation.

Invertibility is achieved by capturing a physical attribute such as time when an output bit settles

using reversible functions. Reversibility is obtained with transmission gates.

Contributions:

The Reversible SW-PUF: We present a novel reversible PUF design based on transmission gates

capable of generating partial input word, (challenge) consistent with a unique hardware-specific

output (response) for a given computing platform.

Probabilistic Verification Computation based on Reversible SW-PUF Scheme: We

develop a probabilistic randomized verification method built on top of the Reversible SW-PUF,

in which the server (cloud computing node) computes the results from a program and generates
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SW-PUF signatures as proof of performing the computation correctly. For verification of the re-

sults, the client can randomly pick a small number of PUF signature pairs (input, output). It can

then send only the response part to the server. Server can compute the corresponding challenge

by running its reversible SW-PUF in reverse. The client can then confirm whether the challenge

for each verification point indeed matches the original signature/proof. Finally, the client can use

a Bayesian Inference Dempster (1968) model to obtain probabilistic proof of the server’s results.

Implementation and Evaluation: The Reversible SW-PUF has been evaluated in HSPICEk-

2015.06 using predictive technology model HiSIM24. We demonstrate the efficiency and effective-

ness of the Reversible SW-PUF. The invertibility of the Reversible SW-PUF offers an alternate,

possibly more efficient, way of providing a proof of verifiable computation. To evaluate the per-

formance of the probabilistic verification computation approach, we implemented a case study

wherein a verification of matrix multiplication was performed and compared with previous works.

The results show increased efficiency.

The rest of the paper is organized as follows. In Section 3.3, we summarize the existing work

on PUFs and describe relevant concepts. Section 3.4 presents reversible SW-PUF which is the

building block for verifiable computation. In section 3.5, we propose the Verifiable Computation

Scheme. The implementation and evaluation of the Reversible SW-PUF is presented in Section 3.6.

To evaluate our approach, we presents a case study of matrix multiplication in section 3.7. Finally,

Section 3.9 concludes the paper.

3.3 Related Work

Physical Unclonable Functions (PUFs) were first proposed in 2002 by Pappu et al. (2002b).

Most popular PUFs are implemented based on timing and delay variation of silicon circuits. Our

proposed design approach is also based on such timing parameters variability. On the other side,

there is a new trending to replace all digital logic with the reversible logic; therefore, There are

several research efforts to build reversible logic to replace the classical logic. For example, Dey

et al. (2019) proposed a new design of reversible PUF based on the Feynman gate.
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PUFs are suitable for use in many application to provide hardware security such as the work

presented by Choi and Kim (2012), Li et al. (2016), Lebedev et al. (2018) and Müller et al.

(2018). This paper focus on applying PUF in the verifiable computation application. Three main

solutions were proposed to support verifiable computation in the literature: verifiable computation

based on Trusted Computing Sailer et al. (2004), Chen et al. (2006). The main drawback of

this approach was the assumption that physical protections cannot be defeated. A second method,

verifiable computation with a Non-Interactive Argument, is described in Parno et al. (2013), Parno

et al. (2016). This approach is not practical because it relies on complex Probabilistically Check-

able Proofs (PCPs) or fully-homomorphic encryption (FHE). Finally, verifiable computation with

Interactive Proofs Vu et al. (2013), Thaler et al. (2012) has been proposed. While this approach

is often efficient, it applies to only a narrow class of computations.

3.4 The Reversible SW-PUF

The design of the Reversible SW-PUF is an extension of our previous work on the SW-PUF

Hamadeh and Tyagi (2019). As in the original SW-PUF, the ALU signatures of an instruction on

the reversible software PUF are generated from an early sampling of the ALU results. However, in

the reverse mode, the roles of inputs and outputs are reversed, and the early sampling is done on the

original input end. Reversible SW-PUF has two modes: forward and reverse. The forward mode

is similar to the SW-PUF where it generates a unique signature by capturing the delay variations

of carry propagation in ripple-carry adders (which is a basic component in an ALU). The delay

variation is caused by instruction input values and the silicon fabrication foundry variations. The

reverse mode computes the partial inputs from the signature and the instruction output. Early

sampling captures a subset of original input bits correctly in a platform specific manner, which itself

is a platform specific secret. Only the computing platform that originally computed the instruction

can regenerate the inputs of the instruction accurate within a certain number of bits. For simplicity,

we illustrate the Reversible SW-PUF design by an example of a 4-bit adder (Figure 3.1). In this

design, Reversible SW-PUF is implemented in reversible logic Toffoli (1980), Bennett (1973).
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Fredkin gate Fredkin and Toffoli (1982) is used as the Boolean basis for conservative logic because

it is universal.

Figure 3.1 Reversible SW-PUF Design (4-bit responses)

Since Fredkin gates are based on Transmutation Gates(TGs), and TGs are slow compare to a

regular gate, we propose to use two ALUs (fast-ALU, rev-ALU). The actual computation values

consumed by the following program instructions occur at the fast-ALU. The rev-ALU is used only

for verification. We need to ensure that the execution time of the rev-ALU both in the forward and

the backward computation modes is less than the execution time of the fast-ALU. For an N -bit

fast-ALU, the rev-ALU is divided into several segments of k < N bits. To define the maximum

length of each segment, the following constraint is used:

(
Tfast ALU

TB rev ALU + TF rev ALU
) ≥ 1 (3.1)
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Where Tfast ALU is the worst-case delay to execute an instruction using the fast ALU.

TB rev ALU and TF rev ALU are the worst case delays over all segments in forward and backward

computation using revALU. As shown in Figure 3.2, we propose to divide the reversible ALU into

four segments of 8-bits each for a 32-bit fast-ALU. This satisfies the delay constraint equation and

still provides an acceptable uniqueness.

Figure 3.2 ALU based Reversible SW-PUF
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3.5 Verifiable Computation Scheme

In this section an efficient Verifiable Computation Scheme based on Reversible SW-PUF is

proposed. The proposed scheme fits with a probabilistic consistency guarantee. In this scheme,

we are interested in estimating the probability of a cloud service to return a correct result for the

outsourced function. The main idea is to bind the verification scheme to the cloud service hardware

by entangling the computation with the SW-PUF. When the cloud computes the function, an

instruction sequence I0, I1, I2, . . . , In for each instruction Il generates relevant attributes which

are the two data inputs for the lth instruction - X l
0, X

l
1, the instruction output Y l, and the PUF

output Pl.

Effectively, the cloud node generates a signature (response) for each instruction (challenge) in

the execution path. This entire sequence of challenge-response pairs will be returned to the client

as a proof of computational consistency.

For the verification process, the client can verify the behavior of a program slice of variable

granularities. Most straightforward granularity is to verify an individual instruction behavior. Pick

a random challenge-response( Ck, Rk) pair of an instruction Ik to verify. The client needs to send

the response part (the instruction output Y k, and the PUF output Pk) to the cloud node. The

cloud instantiates the reversible SW-PUF to re-compute the challenge from the response (the data

inputs of the instruction (X ′ k0 , X
′ k
1 ). Only the cloud node that computed the original signature

will be able to compute the inverse PUF, so that (X ′ k0 , X
′ k
1 ) is consistent with the (Xk

0 , Xk
1 ) in the

original computation’s proof of consistency within a large number of bits. We assume that over

all the clients and programs, the amount of data is too large to be archived by the cloud node

preventing a look-up based response to the verification step.

Repeating this verification process for all the n instructions is not feasible because a large number

of instructions could be executed during a program run. As we discuss later, an alternative approach

to pick a subset of instructions is used to increase the confidence interval for the verification while

maintaining an efficient verification.
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Static program slices raise this granularity naturally. Static program slicing was introduced

by Weiser Weiser (1981). It is a technique for reducing a program to a minimal form that still

retains the original program computation for a given variable at a chosen point. An example of a

program and a backward slice with respect to slicing criterion < 19, x > is given in Figure 3.3 and

3.4. Merging the program slicing technique with our verification scheme leads to a more efficient

Verifiable Computation. A program slice’s input/output consistency can be established with the

Reversible SW-PUF method. For a program slice, all of the instructions in its execution flow can

be verified leading to a deterministic verification. The program slices can be extracted to maximize

certain static properties.

Figure 3.5 describes an example of a client that wants to run the program on a cloud server

using the proposed protocol:

Client: • Send the program P and the inputs to the server.

• Generate a backward slice S using control flow graph shown in Figure 3.4.

• Run slice S on a trusted device.

• Collect the inputs (challenges) of the Reversible SW-PUF (forward mode) for each in-

struction in the execution path for the slice.

Server: • Run the program and generate SW-PUF signatures (the responses Ri in challenge-

response pairs) for each instruction in the execution path of the program P .

• Send the results of the program in addition to the SW-PUF signatures sequence Ri to

the client.

Client: • Perform a consistency check on the SW-PUF inputs (challenges Ci) generated for the

slice S, and the PUF signatures Ri received form the server.

• Pick a subset of the SW-PUF signatures Ri0 , Ri1 , . . . , Rik to verify. More comprehensive

verification will verify each instruction within the slice S. An interactive verification can

pick a subset of instructions from the dominant control-flow paths within S. Regardless,

only the response of an individual instruction Ril is sent to the server at a time.
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Figure 3.3 An Example of Program slicing

Server: • Run the SW-PUF in reverse mode with its output asserted to the response Ri to be

verified. The reverse computation generates the input (challenge Ci) of the PUF.

Client: • Confirm that the challenge Ci does match the response Ri for this SW-PUF given the

(Ci, Ri) pairs from the original program execution at the server. As we describe later, a

reversible SW-PUF match means that the challenge Ci does not equal the inputs of the

ALU at specific bit positions given an early sampling period.

• Iterate over the slice S instructions, and over all the slices.
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Figure 3.4 An Example of control flow graph

• The slices to be verified will ideally be picked so that the probability of behavior mis-

representation for the adversary are minimized.

• Apply Bayesian Inference model to get probabilistic proof about the server’s results.

For choosing the slice set in our scheme, two elements are critical: the size of the slice, and the

number of slices. Since small slices result in more efficient verification (According to Binkley et al.

(2007), the average slice contains just under one-third of the program) we propose to use a selection

method based on the super-node Zhang et al. (2018) algorithm to reduce the verification effort.

However, certain types of program control flow graphs may not be amenable to small slices, and in
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Figure 3.5 The proposed protocol

such a case, different methods could be applied. As in any interactive proof system, increasing the

number of slices will increase confidence in the computed results. To provide a desired probabilistic

proof about the server’s results, we propose to use a Bayesian Inference Dempster (1968) model

to determine the appropriate number of static slices required.

Slices Selection:

Given a program P that contains a set of instructions S, our goal is to find a subset of S called

M such that M exhibits the same behavior as S with respect to one of the program outputs. Once
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we find M , while we want to generate static slices SS that go through M , the selection of M must be

based in some randomized algorithm to prevent an adversary from producing the same M to cheat.

For choosing M , we used the algorithm in Zhang et al. (2018), for selecting all the super-nodes

in P as our set of desired nodes. A super-node is formed from a strict dominator-post-dominator

pair. A node X is defined as a dominator to a node Y if every path from the start node to Y goes

through X. Similarly, a node X is defined as a post-dominator to a node Y if all paths to the exit

node of the graph starting at Y go through X. The super-node method will reduce the proposed

verification scheme overhead. Verifying at least one instruction from each super-node block will

be sufficient to verify the entire slice. The following algorithm summarizes the steps needed for

selecting the desired static slices.

Algorithm 1 Static Slices Selection

1: Generate Control Flow Graph CFG for P .

2: for each function F in CFG

3: Find all super-nodes in F and add them to N .

4: end for

5: Randomly select a subset of super-nodes from N and add

them to M .

6: for each super-node in M

7: Generate a backward static slice SS that goes through

the selected node and highlight these nodes.

8: end for

Probabilistic Verification Algorithms:

In this section, we propose use of a Bayesian inference on a binomial proportion method to verify

the outsourced computation statistically. Bayesian inference is a statistical technique to update our

subjective beliefs as new evidence or data becomes available. Our objective here is to characterize

the probability density function for the outsourced computation correctness given that a set of

slices were run correctly. In particular, we are interested in estimating confidence in verifying the

correctness of the calculation results returned by an untrusted cloud server. Bayesian computation
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of probability distributions starts with a prior belief about a model parameter, then updates this

distribution based on observed data to produce new posterior beliefs.

Before discussing the Bayesian procedure, we will state some underlying assumptions about our

approach.

• We are going to assume that in verification of execution, the slice can only have two outcomes,

pass or fail.

• Each slice generation is independent of the others, i.e. we use a random generator to identify

the slicing criteria used in slice generation.

• Since we have no prior belief about the correctness of the results, we chose a uniform density

of the beta distribution Beta (α, β) Gupta and Nadarajah (2004) to quantify our prior beliefs.

As stated above, we are interested in estimating the probability, given that a set of random slices

passed the verification process, that the results returned by a server are correct. The mathematical

definition of the Bayesian method is as follows: this method relies on Bayes

p(H|D) =
p(D|H)× p(H)

p(D)
(3.2)

Where H denotes our hypothesis, the correctness of the returned results, and D represents the

evidence or the data, the number of slices that passed the verification.

P (H|D) is the posterior probability distribution. This is the probability distribution of our belief

of hypothesis H after evidence D has been taken into account.

P (H) is the prior probability distribution, the strength in our belief of hypothesis H before any

evidence D is observed.

P (D|H) is the likelihood function, representing the probability of data D as generated by a set

of models with parameter H. The probability density functions of the likelihood function can be

chosen depending on the characteristics of the system, and in our approach, we propose to use the
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binomial distribution Annett (1967) since we assume that the verification of slice execution can

only have two outcomes. The definition of the Bernoulli likelihood function is shown below:

p(D|H) =

(
n

y

)
Hy(1−H)(n−y) (3.3)

P(D) is the evidence probability distribution, the total probability of the data.

For simplicity, we will assume that P(D) =1, implying that any failure in one slice will cause

rejection of the returned results. After applying the Bernoulli Function and the beta distribution

Beta (α, β) in the Bayesian equation, we obtain the following equation:

p(H|α, β) =
H(α−1) × (1−H)(β−1)

Beta(α, β)
(3.4)

Where α and β in terms of the Mean µ and the standard deviation σ is given by:

α = (
(1− µ)

σ2
− 1

µ
)× µ2, β = α× (

1

µ
− 1) (3.5)

3.6 Evaluation of the Reversible SW-PUF

We evaluate of 32-bit Reversible SW-PUF in HSPICE k-2015.06 using predictive technology

model HiSIM241 [13] for all NMOS/PMOS transistors with a VDD of 3 V. The HiSIM241 model

supports Design for Manufacturability (DFM). Matlab was used to generate random values for

the DFM parameters for each transistor which creates 16 different patterns of PUF instances. We

studied three metrics: uniqueness, randomness, and reliability.

3.6.0.1 Uniqueness

Uniqueness measures the capability to distinguish between different devices. Hamming Dis-

tances (HD) between PUF responses are used to measure uniqueness. An ideal HD between any

two PUF responses is 50% (16-bit).

To evaluate the uniqueness of the Reversible SW-PUF on the same ALU under different data

inputs (Intra-chip ), we measured the average HD distribution between a pair of output data on

the same device PUF instance with different set of input data.
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The uniqueness of the forward signature for the Reversible SW-PUF has been measured the

same way as the regular SW-PUF Hamadeh and Tyagi (2019). Figure 3.6 (A) shows that the

maximum Hamming distance was 12 (38% of PUF response bits); the minimum was 3 (9% of PUF

response bits); and the average was 6.6 (21% of PUF response bits). For the reverse computation,

both ALUs inputs were measured on ten different PUF instances with identical output (response,

which constitutes the input for a reversible PUF in reverse mode). The Hamming distance between

each pair of different ALUs was calculated. Figure 3.6 (B) shows that the maximum Hamming

distance was 14 (44% of PUF response bits); the minimum was 4 (13% of PUF response bits); and

the average was 9.5 (30% of PUF response bits).

Figure 3.6 Hamming distance distribution of reversible SW-PUF: (A) Forward mode; (B)

Reverse mode

3.6.0.2 Randomness

Randomness evaluates a PUF signature by analyzing the distribution of 0’s and 1’s. The stan-

dard statistical test suite of the National Institute of Standard and Technology (NIST) Bassham

et al. (2010) was used to evaluate the responses of the reversible SW-PUF. We have applied the

NIST tests to 512-bit stream that was produced from the 16 PUF instances. Table 3.1 shows the
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statistical tests results that were observed. Only two category (rank and linear complexity), out of

fifteen statistical tests applied was failed.

Table 3.1 Summary results of statistical tests on reversible SW-PUF responses.

0 #Statistical Test Avg. Success

1 Frequency 96.875%

2 Block Frequency 96.875%

3 Cumulative Sums 96.875%

4 Run 96.875%

5 Longest Run 96.875%

6 Rank 0%

7 Discrete Fourier Transform 100%

8 NonOverlappingTemplate 92.187%

9 OverlappingTemplate 100%

10 Universal 100%

11 RandomExcursionsVariant 100%

12 Approximate Entropy 100%

13 Serial 100%

14 LinearComplexity 0.8437%

The minimum pass rate for each statistical test is approximately 90.6%

3.6.0.3 Reliability

Reliability measures robustness of a PUF in the presence of environmental variations. Tem-

perature variations are the main factor that affect the stability of a PUF response. Therefore,

reliability can be determined by varying the operating temperature and comparing the responses

with a reference response obtained under nominal temperature conditions for the same input. We

used the following equation for calculating the reliability of the reversible SW-PUF responses:

Reliability =

(
1− 1

K

n−1∑
i=0

HD(Ri, Ri,j)

n

)
× 100% (3.6)

where Ri is the reference response at room temperature 25°C, Ri,j is a response observed under

varying temperature value for the same challenge, n is the number of bits of reversible SW-PUF,

and K is the number of samples. Figure 3.7 shows the reliability results for the responses of the
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Reversible SW-PUF for both the forward and backward computations. The reversible PUF is very

stable under the temperature variation from -10°C to 65°C.

Figure 3.7 The reliability of reversible SW-PUF against temperature variations

3.7 Case Study: Verification of Matrix Multiplication

In this section, we evaluate the proposed method thorough a matrix multiplication experiment, a

widely-used example in Verifiable Computation Systems Hui et al. (2018) , Zhang et al. (2017). We

considered the following scenario: a client C needs to multiply two large scale matrices A(n×n)and

B(n×n) using a cloud service S. However, since the client C does not completely trust the cloud S

to return the correct results for multiplication, the client C could verify the results in many ways.

A naive algorithm could replicate the multiplication using another cloud service and compare the

results, but this method is expensive, e.g., multiplying n×n matrices execute O(n3) time using the

standard method. A faster check could use Freivalds’ algorithm Freivalds (1979), a probabilistic

randomized algorithm that verifies matrix multiplication in O(kn2) with a probability of failure

less than 2−k. Our approach improves Freivalds’ algorithm by reducing the running time of the
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verification process by a factor of O(n). Finally, we compare the execution time of our approach

with the Verifiable Computation method proposed in Zhang et al. (2017).

3.7.0.1 Experimental Setup

We implemented a C++ tool to generate the random slices and perform the verification, and a

LLVM compiler framework Lattner and Adve (2004) to compile the matrix multiplication program

into LLVM Immediate Representation (IR). We used the Symbiotic 3 tool Chalupa et al. (2016) to

obtain the backward static slice for the program. Symbiotic 3 linked with C++ code to generate

the random slices in which the slicing criterion was one element of the output matrix. The number

of slices was chosen based on the Bayesian Inference model. For simplicity, we assumed that client

C challenges must completely match the server signatures, and any failure will result in rejection of

the verification. Finally, a Pin tool Luk et al. (2005) was used to generate the desired instruction

traces, while HSPICE was used to represent the Reversible SW-PUF to generate the signatures.

Figure 3.8 shows an example of the proposed tool in which the Client C must choose the desired

probability, after which the tool will generate the appropriate number of slices.

Figure 3.8 An example of generating the desired slices

3.7.0.2 Performance evaluation

We performed the experiments for evaluating our scheme and present the computation time

cost for each of its elements. The resultant time cost was obtained by averaging the outcomes of
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testing 10 different randomly generated inputs of the matrix multiplication code for matrix sizes

ranging from 1000 to 7000.

As shown in Figure 3.9, the beta distribution can be used to model the prior and posterior of

our beliefs. In Figure 3.9, we present three values of posterior beliefs; all of them start with the

same prior (0.5, 0.1) this range is used to represent the absence of the prior information. The first

posterior distribution is assessed after observing and verifying 100 slices; the probability of the total

computation correctness was about 0.9. While observing and verifying 900 slices will increase the

probability of the correctness to about 0.98.

Figure 3.9 The prior and posterior belief distributions for various experiment
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Figure 3.10 Computational time cost comparison between the Server and the Client sides

Table 3.2 shows a computational cost comparison between the server S (i.e. Matrix Multipli-

cation, Reverse computations) and the client C (i.e. Slices Generation ”the number of slices was

picked to produce a probability of more than 0.97”, Signatures Verification) sides. As we can see

from Figure 3.10, the total computation time on the client C side was negligible compared to the

total computation time on the server S side. For example, when n = 1000, the total time executed

on the server S side was about 0.0209s, while the total time needed on the client C side was only

about 0.01s. When n = 7000, the total time executed on the server S side was about 45.573s,

while the total time needed on the client C side was only about 0.021s.

Table 3.2 Computation cost of proposed scheme for different problem size.

Dimension Verification at Client Side Computations at Server Side

Slices Generation Signatures Verification Matrix Multiplication Reverse computations

n= 1000 10.025 ms 0.570 ms 0.201 s 0.008 s

n= 2000 11.504 ms 0.684 ms 2.129 s 0.078 s

n= 3000 12.753 ms 0.746 ms 6.372 s 0.183 s

n= 4000 15.025 ms 0.866 ms 12.479 s 0.366 s

n= 5000 16.875 ms 0.925 ms 20.692 s 0.675 s

n= 6000 17.752 ms 0.990 ms 29.668 s 1.065 s

n= 7000 20.057 ms 1.136 ms 44.050 s 1.523 s
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We evaluate the advantage of our scheme by comparing our experiment with the PVCBMM

scheme proposed in Zhang et al. (2017). Both of the experiments are performed on the same

computer properties. However, we used the Strassen's algorithm Huss-Lederman et al. (1996) to

reduce the time required to multiply matrices. We studied seven dimensions size ranging from 1000

to 7000. As shown in Table 3.3, the experimental results reveal that our scheme is more efficient

than the PVCBMM scheme.

Table 3.3 Computation and Verification cost between two schemes.

Dimension The proposed scheme PVCBMM scheme Zhang et al. (2017)

Computations cost Verification cost Computations cost Verification cost

n= 1000 0.201 s 0.018 s 1.75 s 6.94 s

n= 2000 2.12 s 0.090 s 4.36 s 14.86 s

n= 3000 6.37 s 0.19 s 8.35 s 32.26 s

n= 4000 12.47 s 0.38 s 24.62 s 61.37 s

n= 5000 20.69 s 0.69 s 36.31 s 85.03 s

n= 6000 29.66 s 1.08 s 65.16 s 178.54 s

n= 7000 44.05 s 1.54 s 105.28 s 193.86 s

3.8 Adversary Model

There are many possible threat behaviors that can cause a server cloud node to return incorrect

results, and in this paper, we will consider the following:

Dishonest Server: In this model the server may alter the inputs to reduce the number of

computations.

Hardware or Software Failures: An error may occur during the computation and the

server will not redo the computation but instead present fake results.

Malicious attacks: An unauthorized attacker may be able to access the cloud node and

inject malicious code that will affect result quality.
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All these models can be discovered using the proposed scheme, so the client can detect a mismatch

in the returned signatures with high probability.

3.9 Conclusions

We present reversible SW-PUF, a novel PUF design for computing partial inputs given a set

of outputs. We implemented the reversible SW-PUF in HSPICE and established its desirable

properties (uniqueness, randomness, and reliability). We then provided an efficient interactive

verifiable computation scheme based on the proposed PUF and based on the Bayesian method.

Our approach links outsourced computation with server cloud node hardware to provide proof of

correctness of the results with high probability. We evaluated our verifiable computation scheme

and demonstrated that it yields faster verification than previous approaches.
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CHAPTER 4. PRIVACY PRESERVING DATA PROVENANCE MODEL

BASED ON PUF FOR SECURE INTERNET OF THINGS

Modified from a paper accepted by IEEE-iSES 2019 conference

Hala Hamadeh and Akhilesh Tyagi

4.1 Abstract

Data provenance to maintain data integrity and authenticity is a significant challenge in the

Internet of Things (IoT) environments. Additionally, if the provenance metadata itself can be com-

municated in a privacy preserving manner, it expands the usage of IoT systems to human societal

domains where privacy is of paramount importance. In this paper, we present a scheme to com-

bine data provenance and privacy-preserving solutions. Our scheme merges Physical Unclonable

Function (PUF) technology with non-interactive zero-knowledge proof to provide trustworthy and

dependable IoT systems. In this context, the IoT device can anonymously send data to the cor-

responding server associated with the proof of ownership. First, we propose a privacy-preserving

data provenance protocol. This protocol was synthesized with Altera Quartus. It was implemented

on an Altera Cyclone IV FPGA to demonstrate its practicality and feasibility. Most of the protocol

steps take time of the order of 40µ sec establishing its practicality.

4.2 Introduction

The Internet of Things (IoT) technology deployment has been growing exponentially within the

last decade Conti et al. (2018); Srinivasan et al. (2019); Lu and Da Xu (2018). IoT’s are everywhere

from a smart and connected home, to hospitals, to military & agriculture Firouzi et al. (2018); Ray

(2018); Abdel-Basset et al. (2019). This is still the proverbial tip of an iceberg. The ceiling for IoT
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deployment still has much further to go. This growth brings along several challenges, specially in

the area of cyber-security.

Provenance and privacy preservation are considered two important factors within IoT cber-

security domain due to the fact that the data is transmitted over communication channels. More

specifically, in an IoT system, data provenance refers to the metadata that describes the ownership,

creation process, and modification of data. Providing secure data provenance aims to establish the

trust in the data collected among the IoT devices Aman et al. (2017). Moreover, since IoT networks

are ideally open systems to allow plug-in functionality extension, the data provenance should be

communicated in a way so that the privacy of the provenance provider is not violated by leaking un-

necessary information. This is what a privacy preserving data provenance model seeks to establish.

Physical Unclonable Functions (PUF) are good candidates for providing a unique device-specific

identity. Such unique silicon biometric identities can be a good source of data provenance. Software

PUF (SW-PUF) Hamadeh and Tyagi (2019) composes the silicon fabrication process variation with

the software input defined execution paths to generate reproducible randomness that is both device

and software dependent to serve as a hardware-software fingerprint. This functionality allows the

SW-PUF to provide unique metadata to certify if a specific IoT device executed a specific data

creation or modification program Hamadeh and Tyagi (2019).

Privacy-preservation deals with protection of the IoT devices’ identities. One mechanism to

keep the identity private is based on non-interactive Zero-Knowledge Proof Rackoff and Simon

(1991). Furthermore, integration of the data provenance with the privacy-preserving protocols is

expected to provide a significant benefit in many IoT scenarios. For instance, consider health-

care monitoring in an elder care center. Many vital signs for the elderly patients, such as heart

rate, respiration flow rates, and temperature, could be tracked. In this case, trust in the received

data could derive from trust in the identity of properly registered IoT sensors. However, if the

data transmission protocol reveals the identity of the specific IoT sensors, it automatically reveals

the patient identity. Any exposure of such sensitive data by unauthorized parties is considered

as a violation of federal health insurance portability and accountability act rules. Moreover, any
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tampering or modification of this data can lead to fatal outcomes Adhikary et al. (2019). This

makes trust in the received data from the IoT sensors very critical. We believe a privacy preserving

data provenance model provides backbone for such a trust model.

In this work, we propose a novel privacy preserving data provenance model based on Physical

Unclonable Functions and Non-Interactive Zero-Knowledge Proof systems. This framework guar-

antees that the received data from an IoT device is collected from a registered authorized device;

that it can be verified that the said authorized device ran a specific authorized data creation or

modification program; and that the preceding two properties can be established without reveal-

ing the device identity. Specifically, the proposed solution contributes to achieving the following

security goals:

• Source Identity Authenticity: guarantees that the data originated from the specific IoT device

that sent it.

• Privacy-Preserving Identity: ensures that the real identity of the owner of the data is not

unveiled.

• Data Integrity: confirms that the data transmitted is not tampered with.

• Device Trust: ensures that the device is not exploited by a malicious code.

4.3 Related Work

Recently, several data provenance protocols have been investigated in literature Kamal et al.

(2018); Elkhodr et al. (2018); Jaigirdar et al. (2019). However, only a few of these studies focus

both on the data provenance and privacy-preserving protocols for an IoT system.

For instance, in Sanchez et al. (2018), the authors extended the IBM Idemix protocol with

a non-interactive zero-knowledge proof to sign the metadata transmitted by an IoT device in a

privacy-preserving way. However, this solution is limited to only some types of systems. The

work in Alharbi and Lin (2012), investigates the privacy-preserving data provenance. However,

their design relies on the trust of the server itself on an ecosystem. Few other techniques establish
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secure data provenance based on PUFs. The authors in Javaid et al. (2018) proposed to use

PUF with blockchain network in order to add a unique hardware fingerprint to each IoT device.

Their proposed solution depends on storing many Challenge Response Pairs (CRPs) in the server

memory exposing them to storage attack concerns. In Aman et al. (2017), Aman et. al have

used the Received Signal Strength Indicator (RSSI) along with PUF and symmetric encryption to

provide the privacy of the transmitted metadata between the IoT device and the server. Similar

to the work in Javaid et al. (2018), this scheme also relies on storing many CRPs in the server; in

addition it also relies on the RSSI values which is not practical in some IoT environments. On the

contrary, our solution attempts to overcome all these issues.

4.4 Privacy Preserving data provenance protocol

In this section, we describe our scheme for secure data provenance in an IoT system. The

proposed protocol encompasses four stages. The first stage (called the Setup and Enrollment

stage) is to generate public parameters required by the following stages in the protocol. These

parameters are associated with an IoT device profile indexed by a virtual ID assigned to an IoT

device by the server. The second stage, called authentication stage, is to prove the identity of

an IoT device to the server ensuring its privacy. The third stage, called Key Exchange stage, is

to exchange a symmetric key between a server and an IoT device. The last stage, called Data

Transmission and Verification stage, is to start trusted communication between an IoT device and

the server which confirms the source of the transmitted data. Our design is based on a software

PUF and non-interactive zero-knowledge proofs. The SW-PUF Hamadeh and Tyagi (2019) is used

to provide a proof of identity and root of trust for an IoT device. This type of PUF ensures that the

data generated and processed by an IoT device is measured as it is computed inside the IoT device

itself. This is beneficial in proving the provenance of the data. Non-interactive zero-knowledge

proofs were used to ensure secure privacy-preserving communication between an IoT device and a

server in the authentication process. The elliptic curve cryptography over Binary Fields GF(2m)
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was chosen in order to reduce the computational requirements for the IoT devices while maintaining

the security level of other mathematical frameworks.

A SW-PUF exploits the fact that in an ALU (carry-ripple adder like design), the delays to

settle the output (si) or carry (ci) bits are data-dependent. For some input combinations for A+B

the carry-chain takes only time proportional to one bit-slice, whereas for some others it takes time

proportional to n bit slices (for n bits input data). Average case delay is proportional to O(log n).

Similarly, the delays are silicon foundry dependent along the lines of all PUFs due to process

variations. In synchronous designs, we pick a clock period corresponding to worst case delay of

O(n). However, if we pick an output sampling period closer to logN , we see both input data

and silicon dependent randomness. This serves as a software PUF that verifies both the device

identity through silicon randomness and software identity through execution paths leading to a

specific sequence of data inputs. If such an adder were to be build with reversible logic, such as

transmission gate logic, with conservative logic such as Fredkin-Toffoli gates, it can also certify its

identity to a third party through an interactive challenge-response verification. Its responses Ri to

various input combinations Ci can be recorded as (Ci,Ri) CRPs. If the verifier has access to these

(Ci,Ri) CRPs, it can randomly pick a challenge Ci and ask the SW-PUF to generate the Ci in the

reverse mode. If the protocol ensures that the prover device is not able to use precached (Ci,Ri)

pairs to respond, we can ensure that the SW-PUF exists at the device and behaves as anticipated.

4.4.0.1 Enrollment and Setup stage

This stage is performed only once when an IoT device is deployed in the field for the first time.

An IoT device and a server prepare all parameters required to perform the authentication protocol

in the future and agree on a virtual ID for communication with the IoT device. The following steps

will be performed by an IoT device to generate public parameters required by the following stages:

Note, none of the parameters generated in this stage contain sensitive information, thus, it is safe

to transmit them over an open communication channel.

Device: • Select elliptic curve E over Binary Fields GF(2m)
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• Choose base point G = (Gx,Gy). Not that in ECC, many parameters like G are points

in 2-dimensional space. We will often refer to the x and y components of such points by

notation Gx and Gy respectively.

• Compute public Key A = x·G where x is the SW-PUF signature that has been generated

during the bootup of the device.

• Share the public parameters {G = (Gx,Gy), A = (Ax,Ay)} with the server.

Server: • Generate Virtual id (V id) for the device to use in future communications.

• Store the public parameters associated with this V id.

4.4.0.2 Authentication stage

The authentication of the identity of an IoT device could be performed based on SW-PUF

Hamadeh and Tyagi (2019) and non-interactive zero-knowledge proofs like IBM Idemix Camenisch

and Van Herreweghen (2002), Wallrabenstein (2016). Our protocol uses a unique SW-PUF signa-

ture (x) that can be generated during the bootup phase of the device to authenticate the execution

environment of the device, or it can be generated every time a new data is produced or processed to

authenticate the data creation or modification step at a specific IoT device. If a log of a sequence

of data creation and modification events at a specific IoT device needs to be authenticated, then a

chained hash of these raw SW-PUF signatures in the order of events’ occurrence is needed. This is

similar to the way a TPM maintains platform configuration registers (PCRs). Then, this signature

hash needs to be saved in a protected memory in the IoT device that we will refer to as Metadata

Tracking Register (MTR). MTR’s role is similar to the TPM’s PCR. It holds a chained hash of

provenance metadata evolution through creation and modification steps. The MTR can only be

updated through MTR extension API which takes the hash of current MTR value concatenated

with the new SW-PUF signature val as the new MTR value MTR ← h(MTR(v)||val), same as

the PCR extension. Figure 4.1 shows the proposed protocol for this stage.

The authentication protocol is based on non-interactive zero-knowledge proofs Rackoff and

Simon (1991). These protocols can prove the knowledge or possession of a value to a verifier without
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requiring multiple interactive steps (as in traditional zero-knowledge proofs). This verification leaks

zero information about the value known to the prover. Let the value known to the prover be x.

The prover generates two derived values from x, a t-value given by t = ft(x,K) - a function of the

secret value x and several public parameters such as a key K, and potentially others such as nonces;

a s-value given by s = fs(x,K) - a function of the secret value x and several public parameters

such as a key K, and potentially others such as nonces. The functions fs and ft allow the verifier

to check on some mathematical properties of s and t combined which is not likely to hold unless

the prover knows x. But s and t together do not reveal x. The IoT device (Prover) performs the

following steps every time the device boots up to start a trusted communication with the server

(Verifier):

Figure 4.1 Authentication protocol

Prover: • Ask the Server (Verifier) to initiate the communication.
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Verifier: • Send a random nonce to the prover to ensure that old communications cannot be

reused.

Prover: • Compute v = hash( nonce|| x|| all public parameters|| . . . ).

• Compute t-value where t = v · G. Note that G is a pulic parameter generated during

enrollment.

• Generate challenge c = hash(t-value || all public parameters || . . . ).

• Compute s-value where s = v + c · x.

• Send t-value, s-value to the verifier.

Verifier: • Compute c′ = hash (t-value|| all public parameters|| . . . )

• Compute t′-value = s ·G− c′ · A. Note that A is a public key generated and published

during enrollment.

• Verify that t-value = t′-value holds.

• Reject in case of a mismatch.

Once the server (verifier) authenticates the IoT device (prover) s/he sends Virtual id (V id) to

the device for future communications. Note that V id was generated during enrollment, but not

shared with the IoT device until after authentication. The IoT device could update the metadata

tracking register (MTR) value as follows: MTRnew ← hash(MTRold = SW − PUF at bootup).

This version of MTR however reveals the raw SW-PUF bootup signature. We need to hide it

with some other random parameters. We, however, cannot use non-reproducible parameters such

as time or a random nonce. An MTR digest should be reproducible for the same sequence of

bootup, data creation, and data modification events for the verifiability, just as PCR digests are.

One solution to this is to create a special program module called nonce-parameter-generator (

seed ). When this program executes, SW-PUF generates its signature, which can be used as a

nonce like hiding parameter. The seed could be the bootup SW-PUF signature in MTRold, which

should be reproducible for the future device boot ups. This is the version we propose to use:
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MTRnew ← hash(MTRold||nonce − parameter − generator(MTRold)). The prover/device sends

this MTRnew to the server/verifier to be used in the future steps.

4.4.0.3 Key Exchange stage

To ensure secure communication between the IoT device and the server, we use symmetric

AES encryption algorithm Srinivas and Akramuddin (2016) for better efficiency in place of an

asymmetric encryption system. In this section, we explain the key agreement process between the

device and the server. We use a hash function with a standard key exchange based on elliptic curve

Diffie-Hellman protocol Ahirwal and Ahke (2013) to generate and exchange the AES key between

the two parties. The following explanation outlines the main steps:

Device: • Choose private key kd where kd < 2m.

• Compute public Key Qd = kd ·G. Recall that m and G are public parameters.

• Share the public parameters (Qdx,Qdy) with the server.

Server: • Choose private key ks where ks < 2m .

• Compute public Key Qs = ks ·G

• Share the public parameters (Qsx,Qsy) with the IoT device.

Device: • Compute shared Key Kds = kd ·Qs

• Compute AES key KAES = hash(Kds)

Server: • Compute shared Key Kds = ks ·Qd

• Compute AES key KAES = hash(Kds)

4.4.0.4 Data Transmission and Verification stage

In this section, we propose a transmission and verification protocol for securing the data trans-

mission and providing verification of the provenance in IoT environments. As we stated earlier, the
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AES algorithm has been chosen to encrypt/decrypt all the transmitted messages. The proposed

protocol consists of three phases: Init Communication: where the IoT device initiates the commu-

nication by sending the V id and the stored MTR value. Generating Data: where the IoT device

generates both the data and the metadata and sends them the server. Verify Data Provenance:

where the server verifies the data by confirming the source of the data. The proposed protocol is

shown in Figure 4.2. The following steps describe each phase. This protocol needs to be repeated

for every data transmitted from an IoT device to a server:

Figure 4.2 Data Transmission and Verification protocol

Device: • Ask the Server (Verifier) to initiate the communication.

• Send V id and current MTR value.

Server: • Locate the MTRvalue for the received V id and verify it.

• Reject in case of mismatch.
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Device: • Generate the data and SW-PUF signature (metadata) of a data creation/modification

event generated by the SW-PUF.

• Update MTR value with the new metadata.

MTRnew ← hash(MTRold||SW PUF signature).

• Send Data and metadata consisting of MTRnew and SW-PUF (Ci,Ri) pairs to the

server.

Server: • Verify the received metadata MTRnew and SW PUF signature against the old value

MTRold associated with V id by checking the equalityMTRnew = hash(MTRold||SW PUF signature).

• Reject in case of mismatch.

• Save current time t.

• Pick a small subset of the helper SW-PUF (Ci,Ri) pairs. Verify the existence and

integrity of SW-PUF by sending the response Ri part of the selected subset asking the

prover to generate the corresponding Ci part through reversible computation.

Device: • Run the SW-PUF in reverse mode to generate the challenge Ci corresponding to the

received Ri.

• Send Ci to the server.

Server: • Save current time t′.

• Verify that (t′ − t) < δ. This check ensures that Ci is computed in a reverse mode. An

untruthful device would have needed more than δ time to perform additional computa-

tions or to retrieve it from a secondary storage. Note that we also assume that relative

to the IoT device small cache, the (Ci,Ri) sets are significantly larger - preventing a

cached response to bypass reverse computation.

• Verify if the received response Rireceived matches the response Ri from the (Ci,Ri) pairs

received at the MTR verification stage.

• Reject in case of mismatch.
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• Update MTR value.

4.5 Threat model

Following are some of the objectives of an attacker for the proposed protocol:

• Mimic an IoT device and transfer maliciously modified data to the server.

This attack cannot be applicable in our scheme since the IoT device identity is based on PUF

which makes it close to impossible to generate or clone a fake identity.

• Tamper or modify the data sent by a valid IoT device.

This attack can be detected by the proposed verification protocol, where the MTR value will

not match the saved MTR value at the server.

4.6 Implementation

Complete design of the proposed privacy-preserving data provenance protocol has been modeled

in Verilog (HDL), simulated by ModelSim XE, synthesis with Altera Quartus and implemented on

FPGA Altera Cyclone iv at speed of 50 MHz. The AES-128 encryption and decryption algorithm,

SHA-256 hash function, ECC over Binary Fields GF(2233) engine. All the other proposed protocols

in this paper also map to the FPGA. The SW-PUF is the only component not mapped to the FPGA

since reversible computation using transmission gate logic is not feasible in an FPGA fabric. The

data and the metadata (SW-PUF signatures) generation was performed in software using HSPICE

k-2015.06 and Pin tool (dynamic binary instrumentation tool) Reddi et al. (2004).

As we explain earlier, the public-key cryptography used in the enrollment and authentication

stages was based on an Elliptic curve over the binary field. The ECC is suitable for resource-

constrained system because it can offer the same security level as other asymmetric systems for a

much smaller key size. This implementation used the recommended Curve B-233 presented in the

NIST FIPS Locke and Gallagher (2009) to provide excellent security level. The 233 bits key size

has performance comparable to RSA 2048 bits key size.
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4.7 Results

Our implementation consumes around 40K Logic Elements (LEs) for the IoT device and around

37K LEs for the IoT server. Table 4.1 reports the LEs needed for each step in our protocol. It takes

around 118µ sec to perform the enrollment, authentication, and key exchange protocols. About

120m sec is required to transfer and to verify the provenance of 1 megabyte of data and metadata.

Table 4.2 records the average execution time for each step in our protocol. Note that all the

verification steps take about the same time, but the transmission & verification time dominates.

Note: Communication time between the device and the server is not included, and it depends on

the desired communication technologies. For example, Wi-Fi can transmit data at throughput up

to 1 Gbps Li et al. (2018).

Table 4.1 Performance Results (Total Logic Elements (LEs) )

Protocol IoT Server IoT Device

Enrolment - 109

Authentication 1, 693 729

Key Exchange 22, 941 22, 941

Transmission and verification 16, 670 14, 170

Table 4.2 Performance Results (Execution Time )

Protocol IoT Server IoT Device

Enrolment - 35.4u sec

Authentication 40.1u sec 40.0u sec

Key Exchange 42.5u sec 42.5u sec

Transmission and verification 120.2m sec 71.6m sec
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4.8 Conclusions

In this paper, we present a privacy-preserving data provenance solution that merges Physi-

cal Unclonable Function (PUF) technology with non-interactive zero knowledge proof to provide

trustworthy and dependable IoT systems. In our scheme, an IoT device can anonymously send

data to an IoT server. The server enrolls an IoT device and verifies all the provenance metadata

for data creation and modification. The proposed protocol has been designed and synthesized

with Altera Quartus and implemented on FPGA Altera Cyclone iv. The implementation demon-

strates the practicality and feasibility of our solution, while the simulation results achieve practical

performance that can be deployed for Resource-Constrained IoT Devices.

A server mediated trust system could potentially become a bottleneck in IoT system scalability.

In the future, we are studying distributed systems that provide data provenance within a private

framework.
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CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis we developed and analyzed tools and protocols that provide hardware security.

In Chapter 2 we presented new PUF architectures and evaluated some of their features that

included uniqueness, reliability, and randomness. We also explored some of the applications of these

architectures. We first presented a software PUF suitable for establishing a Software Protection

and Trusted Computing Base. To validate PUF behavior, we implemented our design on an FPGA

platform (Altera DE2 Development and Education Board). A simulation analysis in HSPICEk-

2015.06 using 45 nm technology was also performed. The responses measured from the software

PUF have a sufficiently good uniqueness of about 30% (50%) and more than 96% reliability for

temperatures between -10°C and 65°C. The randomness was measured with a NIST suite of 14 tests

and 12-13 tests were consistently passed with a minimum pass rate of 90.6%.

A reversible SW-PUF was also proposed to provide an efficient mechanism for verifiable com-

putations. Reversible SW-PUF is a novel PUF design for computing partial inputs given a set of

outputs. We evaluated the reversible SW-PUF in HSPICEk-2015.06 using 45 nm technology. The

analysis was performed in terms of two metrics: uniqueness and reliability. The average unique-

ness for reverse computation was 30% while for forward computation it was 21%. The reversible

software PUF exhibited reliability greater than 99% for temperatures ranging from −10C to 65C

for both forward and backward computations. Then, we provided an efficient interactive verifiable

computation scheme based on the proposed PUF and the Bayesian method. Our approach links

outsourced computation with server cloud node hardware to provide proof of correctness of the

results with high probability. We evaluated our verifiable computation scheme and demonstrated

that it yields faster verification than previous approaches.



www.manaraa.com

77

Finally, we proposed a privacy-preserving data provenance solution that merges PUF technology

with non-interactive zero knowledge proof to provide trustworthy and dependable IoT systems. In

our protocol, an IoT device can anonymously send data to an IoT server. The server enrolls an IoT

device and verifies all the provenance metadata for data creation and modification. Our scheme

can guarantee that the data originated from the specific IoT device that sent it while ensures

that the real identity of the owner of the data is not unveiled. The proposed protocol has been

evaluated and synthesized with Altera Quartus and implemented on FPGA Altera Cyclone iv. The

implementation demonstrates the practicality and feasibility of our solution, while the simulation

results achieve practical performance that can be deployed for Resource-Constrained IoT Devices.

5.2 Future Work

The results presented in this work could lead to several future areas of study, including the

following:

• Study the threat of machine learning-based software modeling attacks to the SW-PUF and

the reversible SW-PUF security, and examine other possible attacks.

• Develop an error-correcting scheme to correct noise in SW-PUF responses.

• Extend an ALU-like PUF to other micro-architecture level units for complete coverage of the

instruction set architecture (ISA).

• A program-analysis algorithm could be developed to add more flexibility to the proposed

verifiable computation scheme. This would provide a client with the ability to pick the

density of the sliced samples to maximize confidence that the server will return the correct

results. Such an algorithm can also use an optimization process to pick the ideal set of slices,

possibly minimizing the probability of behavior misrepresentation by an adversary.
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